A differential equation for surface waves in layers with varying thickness
نویسندگان
چکیده
منابع مشابه
A State Space Method for Surface Instability of Elastic Layers With Material Properties Varying in Thickness Direction
A state space method is proposed for analyzing surface instability of elastic layers with elastic properties varying in the thickness direction. By assuming linear elasticity with nonlinear kinematics, the governing equations for the incremental stress field from a fundamental state are derived for arbitrarily graded elastic layers subject to plane-strain compression, which lead to an eigenvalu...
متن کاملDifferential transformation method for solving a neutral functional-differential equation with proportional delays
In this article differential transformation method (DTMs) has been used to solve neutral functional-differential equations with proportional delays. The method can simply be applied to many linear and nonlinear problems and is capable of reducing the size of computational work while still providing the series solution with fast convergence rate. Exact solutions can also be obtained from the kno...
متن کاملStochastic differential equation approach for waves in a random medium.
We present a mathematical approach that simplifies the theoretical treatment of electromagnetic localization in random media and leads to closed-form analytical solutions. Starting with the assumption that the dielectric permittivity of the medium has delta-correlated spatial fluctuations, and using Ito's lemma, we derive a linear stochastic differential equation for a one-dimensional random me...
متن کاملA method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers
In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...
متن کاملA Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel
Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1968
ISSN: 0022-247X
DOI: 10.1016/0022-247x(68)90227-8